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ABSTRACT. We give a simple argument to show that if α is an affine isometric action
of a product G ×H of topological groups on a reflexive Banach space X with linear
part π, then either π(H) fixes a unit vector or α|G almost fixes a point on X .

It follows that if π is an isometric linear representation of a topological group G
on a reflexive space X such that π(Z(G)) has no fixed unit vectors, then the reduced
cohomology vanishes, i.e., H1

(G,π)= 0.

1. LINEAR REPRESENTATIONS AND COCYCLES

When X is a vector space, the group of bijective affine transformations of X ,
Aff(X ), can be decomposed as a semidirect product

Aff(X )=GL(X )n X ,

with respect to the natural action of GL(X ) on X . The product in GL(X )n X is then
simply (T, x)·(S, y)= (TS,T y+x), while the corresponding action of (T, x) ∈GL(X )nX
on X is given by (T, x) · y= T y+ x.

Thus, an action α of a group G by affine transformations of the vector space X can
be viewed as a homomorphism of G into Aff(X ), which thus can be split into a linear
representation π : G → GL(X ), called the linear part of α, and an associated cocycle
b : G → X such that the following cocycle identity holds,

b(gf )=π(g)b( f )+b(g),

for all g, f ∈G.
If, moreover, X is a reflexive Banach space and π : G →GL(X ) is a fixed isometric

linear representation of a topological group G on X that is strongly continuous, i.e.,
such that for every x ∈ X the map g ∈ G 7→ gx ∈ X is continuous, we can consider
the corresponding vector space Z1(G,π) of continuous cocycles b : G → X associated
to π. The subspace B1(G,π) ⊆ Z1(G,π) consisting of those cocycles b for which the
corresponding affine action α fixes a point on X , i.e., for which there is some x ∈ X
such that b(g) = x−π(g)x for all g ∈ G, is called the set of coboundaries. Note that
if b is a coboundary, then b(G) is a bounded subset of X . Conversely, if b(G) is a
bounded set, then any orbit O of the corresponding affine action is bounded and so,
by reflexivity of X , its closed convex hull C = conv(O ) is a weakly compact convex set
on which G acts by affine isometries. It follows by the Ryll-Nardzewski fixed point
theorem [4] that G fixes a point on C, meaning that b must be a coboundary.

Every compact set K ⊆ G determines a seminorm ‖·‖K on Z1(G,π) by ‖b‖K =
supg∈K‖b(g)‖ and the family of seminorms thus obtained endows Z1(G,π) with a
locally convex topology. With this topology, one sees that a cocycle b belongs to the
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closure B1(G,π) if and only if the corresponding affine action α = (π,b) almost has
fixed points, that is, if for any compact set K ⊆G and ε> 0 there is some x = xK ,ε ∈ X
verifying

sup
g∈K

‖(π(g)x+b(g)
)− x‖ = sup

g∈K
‖b(g)− (

x−π(g)x
)‖ < ε.

If, for any K , we can choose x = xK ,1 above to have arbitrarily large norm, we see
that the supremum

sup
g∈K

∥∥π(g)
x

‖x‖ − x
‖x‖

∥∥< supg∈K‖b(g)‖+1

‖x‖
can be made arbitrarily small, which means that the linear action π almost has
invariant unit vectors. If, on the other hand, for some K the choice of xK ,1 is bounded
(but non-empty), then the same bound holds for any compact K ′ ⊇ K , whereby we
find that b(G) ⊆ X is a bounded set, i.e., that b ∈ B1(G,π). Thus, this shows that
if π does not almost have invariant unit vectors, the set B1(G,π) will be closed in
Z1(G,π). In fact, if b ∈ Z1(G,π)\ B1(G,π) and π does not almost have invariant unit
vectors, then for any constant c there is a compact set K ⊆ G such that no vector is
(α(K), c)-invariant, where α= (π,b).

Conversely, a result of A. Guichardet [3], valid for locally compact σ-compact G,
states that if π does not have invariant unit vectors and B1(G,π) is closed in Z1(G,π),
then π does not almost have invariant unit vectors.

We define the first cohomology group of G with coefficients in π to be the quotient
space H1(G,π)= Z1(G,π)/B1(G,π), while the reduced cohomology group is H1(G,π)=
Z1(G,π)/B1(G,π).

2. AFFINE ACTIONS OF PRODUCT GROUPS ON REFLEXIVE SPACES

In the following, let X be a reflexive Banach space, G and H be topological groups
and π be a strongly continuous linear isometric representation of G ×H on X . We
also fix a cocycle b ∈ Z1(G × H,π) and let α be the corresponding affine isometric
action of G×H on X .

Proposition 1. One of the following must hold,
(1) there is a π(H)-invariant unit vector,
(2) for any closed convex α(H)-invariant sets C ⊆ X , α|G almost has fixed points

on C.

Proof. Assume that there are no π(H)-invariant unit vectors in X . Then, if πn : H →
GL(X n) denotes the diagonal representation on X n = (X ⊕ . . .⊕ X )2, πn(H) has no
invariant unit vectors on X n. By reflexivity, for any x ∈ X n, C = conv(πn(H)x)
is a πn(H)-invariant weakly compact convex subset of X n and thus, by the Ryll-
Nardzewski fixed point theorem, πn(H) fixes a point on C, whereby 0 ∈ conv(πn(H)x).
Therefore, for any ε > 0 and (y1, . . . , yn) ∈ X n there are hi ∈ H and λi > 0,

∑
iλi = 1,

such that for all k = 1, . . . ,n, ∥∥∑
i
λiπ(hi)yk

∥∥< ε.
In particular, if C ⊆ X is a closed convex α(H)-invariant set, ε > 0 and K ⊆ G

compact, fix y ∈ C and find g1, . . . , gn ∈ K such that {α(g1)y, . . . ,α(gn)y} is ε
2 -dense in

α(K)y. Choose now hi and λi as above such that∥∥∑
i
λiπ(hi)(y−α(gk)y)

∥∥< ε
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for all k = 1, . . . ,n. Thus, if g ∈ K , pick k such that ‖α(g)y−α(gk)y‖ < ε
2 . Then, since∥∥∑

iλiπ(hi)
∥∥É 1,∥∥(∑

i
λiα(hi)y

)−α(g)
(∑

i
λiα(hi)y

)∥∥= ∥∥(∑
i
λiα(hi)y

)− (∑
i
λiα(g)α(hi)y

)∥∥
= ∥∥(∑

i
λiα(hi)y

)− (∑
i
λiα(hi)α(g)y

)∥∥
= ∥∥∑

i
λi

(
α(hi)y−α(hi)α(g)y

)∥∥
= ∥∥∑

i
λi

(
π(hi)y−π(hi)α(g)y

)∥∥
< ∥∥∑

i
λiπ(hi)(y−α(g)y)

∥∥
< ∥∥∑

i
λiπ(hi)(y−α(gk)y)

∥∥+ ε

2
< ε.

In other words, the point
∑

iλiα(hi)y ∈ C is (α(K),ε)-invariant. �

Corollary 2. Let G be a topological group and Z(G) its centre. Suppose π is a
strongly continuous isometric linear representation on a reflexive Banach space X
such that π(Z(G)) has no fixed unit vectors. Then H1(G,π)= 0, i.e., any affine isomet-
ric action with linear part π almost has fixed points on X .

Proof. Fix b ∈ Z1(G,π) and let α= (π,b) denote the corresponding affine action. Then
α induces an affine action α̃ of G×Z(G) on X by letting the first and second coordinate
act separately via α. Since the linear part of α̃ restricted to the second coordinate is
simply π|Z(G), it follows by Proposition 1 that α = α̃|G almost has invariant vectors.

�

Corollary 2 applies in particular to linear representations of an abelian group G
without fixed unit vectors. However, we should note that even this special case fails
for more general Banach spaces, e.g., for `1. To see this, let π denote the left regular
representation of Z on `1(Z) and let b ∈ Z1(Z,π) be given by b(n)= e0+ e1+ . . .+ en−1.
Then π has no invariant unit vectors. Also, if x =∑k

n=−k anen is any finitely supported
vector, we have

‖x−α(1)x‖ =|a−k|+ |a−k+1 −a−k|+ . . .+|a−1 −a−2|+ |a0 −a−1 +1|
+ |a1 −a0|+ . . .+|ak −ak−1|+ |ak|

Ê1.

So ‖x−α(1)x‖ Ê 1 for all x ∈ `1(Z) and b ∉ B1(G,π).

Corollary 3. If α(G ×H) has no fixed point on X and π(G) and π(H) no invariant
unit vectors, then

(1) α|G and α|H almost have fixed points, and
(2) π|G and π|H almost have invariant unit vectors.

Proof. Item (1) follows directly from Proposition 1, which means that b|G ∈ B1(G,π|G)
and b|H ∈ B1(H,π|H). However, neither α(G) nor α(H) have fixed points, i.e., b|G ∉
B1(G,π|G) and b|H ∉ B1(H,π|H). For if, e.g., α(H) fixed a point x ∈ X , then C = {x}
would be a closed convex α(H)-invariant set on which α|G would have almost fixed
points, i.e., x would be fixed by α(G) and so x would be a fixed point for α(G ×H),
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contradicting our assumptions. Thus, neither B1(G,π|G) nor B1(H,π|H) is closed,
whereby (2) follows. �

Corollary 4. Suppose G =G1×. . .×Gn is a product of topological groups and π : G →
GL(X ) is a linear isometric representation on a separable reflexive space X . Then X
admits a decomposition into π(G)-invariant linear subspaces X =V⊕Y1⊕. . .⊕Yn⊕W ,
such that

(1) V is the space of π(G)-invariant vectors,
(2) any b ∈ Z1(G,πYi ) factors through a cocycle defined on G i,
(3) Z1(G,πW )⊆ B1(G1,πW )⊕ . . .⊕B1(Gn,πW ),

where πW denotes the restriction of π to the invariant subspace W and similarly for
Yi.

Proof. By Theorem 4.10 of [2], for any group of linear isometries of a separable re-
flexive space Y there is an invariant decomposition of Y into the subspace of fixed
points and a canonical complement. Thus, by recursion on the size of s ⊆ {1, . . . ,n},
we obtain a π(G)-invariant decomposition

X = ∑
s⊆{1,...,n}

Xs,

where every non-zero x ∈ Xs is fixed by π
(∏

i∉s G i
)

and by none of π(G i) for i ∈ s. So
if b ∈ Z1(G,πXs ) and g ∈∏

i∉s G i, then for any h ∈∏
i∈s G i,

b(h)+b(g)=π(g)b(h)+b(g)= b(gh)= b(hg)=π(h)b(g)+b(h),

i.e., π(h)b(g) = b(g), which implies that b(g) = 0. It follows that if s 6= ;, then any
b ∈ Z1(G,πXs ) factors through a cocycle defined on

∏
i∈s G i.

Also, if |s| Ê 2, then by Corollary 3 we see that any b ∈ Z1(G,πXs ) can be written
as b = b1 ⊕ . . .⊕ bn, where bi ∈ B1(G i,πXs ). Thus, if we set V = X;, Yi = X{i} and
W =∑

|s|Ê2 Xs, the result follows. �

Proposition 1 was shown by Y. Shalom [5] in the special case of locally compact
σ-compact G and H and X = H a Hilbert space, but by different methods essen-
tially relying on the local compactness of G and H and the euclidean structure of X .
This also provided the central lemma for the rigidity results of [5] via the following
theorem, whose proof we include for completeness.

Theorem 5 (Shalom [5] for locally compact G and H). Let π : G ×H → GL(H ) be a
strongly continuous isometric linear representation of a product of topological groups
on a Hilbert space H and assume that neither π(G) nor π(H) have invariant unit
vectors. Then Z1(G×H,π)= B1(G×H,π) and so H1(G×H,π)= 0.

Proof. Let b ∈ Z1(G × H,π) be given with corresponding affine isometric action α

and fix compact subsets K ⊆ G, L ⊆ H and an ε > 0. Then, by Proposition 1, the
closed convex α(G)-invariant set C ⊆ H of (α(L),ε/2)-invariant points is non-empty.
Similarly, there is an (α(K),ε/2)-invariant point in H .

Now, by the euclidean structure of H , for any y ∈ H , there is a unique point
P(y) ∈ C closest to y and, as α(G) acts by isometries on H leaving C invariant, the
map P is α(G)-equivariant, i.e., P(α(g)y) = α(g)P(y). Moreover, using the euclidean
structure again, P is 1-Lipschitz, whereby

‖P(y)−α(g)P(y)‖ = ‖P(y)−P(α(g)y)‖ É ‖y−α(g)y‖,
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for all y ∈ H and g ∈ G. In particular, if y ∈ H is (α(K),ε/2)-invariant, then P(y) is
both (α(K),ε/2) and (α(L),ε/2)-invariant, i.e., P(y) is (α(K ×L),ε)-invariant. Since K ,
L and ε are arbitrary, we have that b ∈ B1(G×H,π). �

U. Bader, A. Furman, T. Gelander and N. Monod [1] studied the structure of affine
actions of product groups on uniformly convex spaces (a subclass of the reflexive
spaces) and in this setting obtained a slightly weaker result than Shalom. Namely,
if π : G × H → GL(X ) is a strongly continuous isometric linear representation of a
product of topological groups on a uniformly convex space X such that neither π(G)
nor π(H) have invariant unit vectors, then either

(a) π almost has invariant unit vectors, or
(b) Z1(G×H,π)= B1(G×H,π).

Proposition 1 is somewhat independent of their statement and shows that one can
add that α|G and α|H almost have fixed points to (a) above.
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